Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method
نویسندگان
چکیده
Nanodrug-carrier delivery in the blood stream is strongly influenced by nanoparticle (NP) dispersion. This paper presents a numerical study on NP transport and dispersion in red blood cell (RBC) suspensions under shear and channel flow conditions, utilizing an immersed boundary fluid-structure interaction model with a lattice Boltzmann fluid solver, an elastic cell membrane model and a particle motion model driven by both hydrodynamic loading and Brownian dynamics. The model can capture the multiphase features of the blood flow. Simulations were performed to obtain an empirical formula to predict NP dispersion rate for a range of shear rates and cell concentrations. NP dispersion rate predictions from the formula were then compared to observations from previous experimental and numerical studies. The proposed formula is shown to accurately predict the NP dispersion rate. The simulation results also confirm previous findings that the NP dispersion rate is strongly influenced by local disturbances in the flow due to RBC motion and deformation. The proposed formula provides an efficient method for estimating the NP dispersion rate in modeling NP transport in large-scale vascular networks without explicit RBC and NP models.
منابع مشابه
Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method
In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...
متن کاملNumerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System
In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method...
متن کاملAn immersed boundary lattice Boltzmann approach for microscopic blood flows
In this paper, we develop an immersed boundary lattice Boltzmann approach to simulate deformable capsules in flows. The lattice Boltzmann method is utilized to solve the incompressible flow field over a regular Eulerian grid, while the immersed boundary method is employed to incorporate the fluid–membrane interaction with a Lagrangian representation of the capsule membrane. This algorithm was v...
متن کاملA novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کامل